associate via a complex network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and dipolar attractions, utilizing most of the available amide and carbonyl functional groups.

References

Bremner, D. H., Campbell, M. M. \& Johnson, G. (1976), Chem. Commun. pp. 293-294.
Bremner, D. H., Campbell, M. M. \& Johnson, G. (1977), J. Chem. Soc. Perkin Trans. 1, pp. 1943-1948.

Cameron, A. F., Cameron, I. R., Campbell, M. M. \& Johnson, G. (1976). Acta Cryst. B32, 1377-1381.
Campbell, M. M. \& Johnson, G. (1975). Chem. Commun. pp. 479-480.
Colens, A., Declerce, J. P., Germain, G., Putzeys, J. P. \& Van Meerssche, M. (1974). Cryst. Struct. Commun. 3, 119-122.

Cox, P. J., McClure, R. J. \& Sim, G. A. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 360-363.
Kartha, G. \& Ambady, G. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 2042-2046.
Kobelt, D. \& Paulus, E. F. (1974a). Acta Cryst. B30, 1605-1607.
Kobelt, D. \& Paulus, E. F. (1974b). Acta Cryst. B30, 1608-1610.
Mukerjee, A. K. \& Singh, A. K. (1975). Synthesis, 9, 547589.

Paulus, E. F. (1974a). Acta Cryst. B30, 2915-2917.
Paulus, E. F. (1974b). Acta Cryst. B30, 2918-2920.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stoodley, R. J. (1975). Tetrahedron, 31, 2321-2345.
Vijayan, K., Anderson, B. F. \& Hodgin, D. C. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 484-488.

Acta Cryst. (1979). B35, 1266-1268

Structure of Demethylsterigmatocystin

By Osamu Yoshida,* Nobuo Tanaka, Tamaichi Ashida \dagger and Masao Kakudo Institute for Protein Research, Osaka University, Yamadakami, Suita, Osaka 565, Japan
and Keilchi Fukuyama \ddagger and Yukiteru Katsube
Faculty of Engineering, Tottori University, Koyama, Tottori 680, Japan

(Received 1 November 1978; accepted 23 January 1979)

Abstract

C}_{17} \mathrm{H}_{10} \mathrm{O}_{6}, M_{r}=310 \cdot 3\), monoclinic, $C 2, a=$ 16.359 (3), $b=7.099$ (1), $c=12.150$ (1) $\AA, \beta=$ $107.71(1)^{\circ}, D_{x}=1.53 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=4$. The structure was refined by the block-diagonal leastsquares method to $R=0.068$ for 962 non-zero reflections. The xanthone skeleton is slightly twisted to take a propeller-like form.

Introduction. The title compound was isolated from Aspergillus versicolor (Vuillemin) Tiraboschi, and was shown to be a demethyl derivative of sterigmatocystin (Elsworthy, Holker, McKeown, Robinson \& Mulheirn, 1970). The present X-ray analysis was undertaken to reveal the conformation of the dihydrofuro[2,3-b]furan moiety which is a common structural unit in toxic metabolites of the genus A spergillus.

[^0]0567-7408/79/051266-03\$01.00

Pale yellow needle-shaped crystals elongated along the b axis were obtained from acetone solution. The systematic absences uniquely characterized the space group as $C 2$, since the compound has optical activity. The unit-cell constants were obtained by least-squares refinement of the setting angles measured on a fourcircle diffractometer. The intensities were measured on a Rigaku computer-controlled four-circle diffractometer using Ni -filtered $\mathrm{Cu} K a$ radiation from a crystal cut to approximate dimensions of $0.1 \times 0.3 \times 0.1 \mathrm{~mm}$. The $\theta-2 \theta$ scan technique was employed with a scan speed of $4^{\circ} \min ^{-1}$ in 2θ. The scan range for θ was calculated as $1.0^{\circ}+0.15^{\circ} \tan \theta$. The backgrounds were counted for 10 s at both sides of the scan range. The intensities of 1081 reflections were measured within the range $2 \theta \leq 120^{\circ}$; 962 of these were nonzero, and corrected for Lorentz and polarization factors only. The structure was solved by interpretation of the Patterson function, and refined by block-diagonal least-squares calculations (Ashida, 1973) with anisotropic temperature factors for heavy atoms and fixed isotropic temperature factors ($4 \cdot 0 \AA^{2}$) © 1979 International Union of Crystallography
for H atoms, where unit weight was applied for each reflection. The final R value was 0.068 for all non-zero reflections. The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). The final atomic coordinates are given in Table 1.*

Discussion. The molecular structure is shown in Fig. 1, together with the atomic numbering used in this paper; the configurations around $\mathrm{C}(14)$ and $\mathrm{C}(17)$ were assumed to be the same as those in related molecules established by the X-ray method (Fukuyama, Hamada, Tsukihara \& Katsube, 1978; Bear, Waters \& Waters, 1970). The bond lengths and angles for non-hydrogen atoms are shown in Table 2, and the equations of leastsquares planes and the deviations of atoms from each plane are in Table 3.

> * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34174 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final atomic coordinates ($\times 10^{4}$ for nonhydrogen atoms and $\times 10^{3}$ for hydrogen atoms)

		x		y	z
C(1)		1274 (5)		2641 (18)	1115 (7)
C(2)		1047 (5)		2723 (16)	2105 (7)
C(3)		1662 (5)		2610 (16)	3219 (6)
C(4)		1418 (5)		2641 (18)	4256 (7)
C(5)		2114 (5)		2491 (15)	5342 (6)
C(6)		1974 (5)		2544 (15)	6432 (6)
$\mathrm{C}(7)$		2638 (6)		2507 (16)	7427 (7)
C(8)		3473 (6)		2360 (15)	7386 (7)
C(9)		3658 (6)		2314 (16)	6337 (7)
$\mathrm{C}(10)$		2972 (5)		2400 (16)	5349 (6)
$\mathrm{C}(11)$		2532 (5)		2351 (15)	3286 (6)
C (12)		2775 (5)		2155 (15)	2305 (7)
C(13)		2136 (6)		2286 (15)	1259 (6)
C(14)		3352 (7)		1452 (17)	792 (8)
C(15)		4226 (7)		4030 (17)	1160 (9)
C(16)		4151 (6)		3688 (16)	2182 (8)
C(17)		3639 (6)		1860 (16)	2121 (7)
$\mathrm{O}(1)$		212 (4)		3034 (12)	2006 (5)
$\mathrm{O}(2)$		658 (4)		2824 (13)	4252 (5)
$\mathrm{O}(3)$		1158 (4)		2710 (13)	6496 (5)
$\mathrm{O}(4)$		3168 (3)		2283 (10)	4319 (4)
$\mathrm{O}(5)$		2453 (4)		2002 (12)	347 (4)
O (6)		3841 (4)		2733 (16)	321 (5)
	Bonded to		x	y	z
H(1)	C (1)		88 (6)	175 (18)	39 (8)
H(2)	$\mathrm{O}(1)$		15 (6)	293 (19)	246 (8)
H(3)	$\mathrm{O}(3)$		94 (6)) 287 (20)	591 (8)
H(4)	C(7)		259 (6)) 233 (19)	807 (8)
H(5)	C(8)		390 (6)	224(19)	799 (8)
H(6)	C(9)		427 (6)	213(19)	633 (8)
H(7)	C (14)		341 (7)) 15 (19)	56 (9)
H(8)	C(15)		457 (7)	509(19)	103 (9)
H(9)	C(16)		433 (6)	470(18)	277 (9)
H(10)	C (17)		400 (7)) 44 (19)	263 (9)

There are two intramolecular hydrogen bonds: $\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(2)$ and $\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{O}(2)$. The distances $\mathrm{O}(2) \cdots \mathrm{H}(2)$ and $\mathrm{O}(2) \cdots \mathrm{H}(3)$ are 2.08 and $1.93 \AA$, respectively, and the angles $\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(2)$ and $\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{O}(2)$ are 148 and 161°. Comparison of the bond angles $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$ and $\mathrm{C}(5)-\mathrm{C}(6)-$ $\mathrm{O}(3)$ with those of related compounds has shown that the angle involving the hydroxyl group as a side chain is larger by a few degrees than that involving the methoxy group. The same effect has been observed in other compounds, and interpreted by Coppens \& Schmidt (1965). The other bond lengths and angles in the xanthone skeleton seem to be the same as those

Fig. J. Molecular structure of demethylsterigmatocystin plotted by a local version of PLUTO (Motherwell, 1976).

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses

$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$.	1.365 (17)	$\mathrm{C}(1)-\mathrm{C}(13) \quad 1$	$1 \cdot 390$ (17)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$.	1.421 (16)	$\mathrm{C}(2)-\mathrm{O}(1) \quad 1$	$1 \cdot 352$ (14)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$.	1.433 (17)	$\mathrm{C}(3)-\mathrm{C}(11) \quad 1$.	1.414 (15)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$.	1.461 (16)	$\mathrm{C}(4)-\mathrm{O}(2) \quad 1$	1.248 (15)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$.	1.413 (15)	$\mathrm{C}(5)-\mathrm{C}(10) \quad 1$	1.402 (15)
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1$.	1.358 (16)	$\mathrm{C}(6)-\mathrm{O}(3) \quad 1$	1.365 (14)
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.38$	1.386 (16)	$\mathrm{C}(8)-\mathrm{C}(9)$. 1	1.397 (16)
$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$.	1.373 (16)	$\mathrm{C}(10)-\mathrm{O}(4) \quad 1$	$1 \cdot 386$ (13)
$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$.	1.374 (15)	$\mathrm{C}(11)-\mathrm{O}(4) \quad 1$	1.366 (13)
$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	1.382 (15)	$\mathrm{C}(12)-\mathrm{C}(17) \quad 1$	1.511 (16)
$\mathrm{C}(13)-\mathrm{O} 5) \quad 1$.	1.373 (14)	$\mathrm{C}(14)-\mathrm{C}(17) \quad 1$	1.565 (17)
$\mathrm{C}(14)-\mathrm{O}(5) \quad 1$.	1.458 (15)	$\mathrm{C}(14)-\mathrm{O}(6) \quad 1$	1.440 (17)
$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$.	1.307 (17)	$\mathrm{C}(15)-\mathrm{O}(6)$ 1.	$1 \cdot 376$ (17)
$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$.	1.534 (16)		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	$115 \cdot 8$ (11)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.2(11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	117.8 (11)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	119.9 (10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	122.0 (10)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	118.1 (10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	119.8 (10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.3 (10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	122.8 (11)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(2)$	120.9 (11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.7 (10)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$120 \cdot 9$ (10)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	116.3 (10)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.3 (10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$	119.8 (10)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(3)$	118.9 (10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.0 (11)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.6 (10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.8 (10)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	123.9 (10)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(4)$	$120 \cdot 2$ (10)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(4)$	$115 \cdot 8$ (10)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	121.0 (10)	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(4)$	122.0 (9)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(4)$	117.0 (9)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) $117.0(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$) 132.3 (10)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$) $110.7(9)$
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	125.6 (11)	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(5)$	122.9 (10)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(5)$	111.5 (9)	$\mathrm{C}(17)-\mathrm{C}(14) \mathrm{O}(5)$	106.6 (9)
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{O}(6)$	105.4 (10)	$\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{O}(6)$	107.7 (10)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{O}(6)$	115.2 (11)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$) $108.6(10)$
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(14)$) $100 \cdot 2$ (9)	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$) 113.4 (9)
$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{C}(16)$	16) 101.2 (9)	$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(11)$	$120 \cdot 5$ (8)
$\mathrm{C}(13)-\mathrm{O}(5)-\mathrm{C}(14)$	109.0 (9)	$\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(15)$	108.2 (10)

Table 3. Least-squares planes and deviations (\AA) of atoms from each plane

The e.s.d.'s of the deviations are $\sim 0.015 \AA$.
(a) Xanthone skeleton

$0.100 X+0.995 Y+0.005 Z=1.982^{*}$			
$\mathrm{C}(1)$	-0.06	$\mathrm{C}(2)$	-0.05
$\mathrm{C}(3)$	-0.03	$\mathrm{C}(4)$	0.02
$\mathrm{C}(5)$	0.04	$\mathrm{C}(6)$	0.06
$\mathrm{C}(7)$	0.01	$\mathrm{C}(8)$	-0.03
$\mathrm{C}(9)$	-0.06	$\mathrm{C}(10)$	-0.03
$\mathrm{C}(11)$	0.01	$\mathrm{C}(12)$	0.08
$\mathrm{C}(13)$	0.06	$\mathrm{O}(2)$	0.01
$\mathrm{O}(4)$	-0.02	$\mathrm{O}(1) \dagger$	-0.13
$\mathrm{O}(3) \dagger$	0.08	$\mathrm{C}(14) \dagger$	0.43
$\mathrm{C}(17) \dagger$	0.14	$\mathrm{O}(5) \dagger$	0.18

(b) Five-membered ring comprising $\mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(17)$, and $O(5)$

$0.219 X+0.973 Y-0.073 Z=2.153^{*}$			
$C(12)$	0.05	$C(13)$	0.02
$C(14)$	0.08	$C(17)$	-0.09
O(5)	-0.05		

(c) Five-membered ring comprising $\mathrm{C}(14), \mathrm{C}(15), \mathrm{C}(16), \mathrm{C}(17)$, and $O(6)$

$0.793 X-0.573 Y+0.206 Z=3.793^{*}$			
C(14)	0.08	$C(15)$	0.01
$C(16)$	0.03	$C(17)$	-0.06
$O(6)$	-0.06		

[^1]found in related molecules. The skeleton of the present molecule is slightly twisted along its longitudinal axis to take a propeller-like form, while the skeleton in the p bromobenzoate ester of sterigmatocystin took a bent form (Fukuyama, Tsukihara, Katsube, Tanaka, Hamasaki \& Hatsuda, 1975). The conformation of the ring $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{C}(17)$ approximates
a half-chair with $\mathrm{C}(14)$ and $\mathrm{C}(17)$ displaced on opposite sides of the plane through $\mathrm{C}(12), \mathrm{C}(13)$, and $\mathrm{O}(5)$, while that of $\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{O}(6)$ is an envelope with $\mathrm{C}(14)$ displaced from the plane through $\mathrm{C}(15), \mathrm{C}(16), \mathrm{C}(17)$, and $\mathrm{O}(6) . \mathrm{C}(12)-$ $\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{O}(5)$ and $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{O}(6)$ torsion angles are 13.6 and 11.2°, respectively, each of which is the largest of the values in related molecules so far determined (Fukuyama, Ashida, Katsube \& Kakudo, 1979). The molecules related by screw symmetry are stacked with respect to each other along the b axis at the xanthone moieties with a dihedral angle of about 11°. The intermolecular short contact (2.83 \AA) between $\mathrm{O}(3)$ and $\mathrm{O}(2)$ of an adjacent molecule seems to be a van der Waals contact.

We wish to thank Professor Yuichi Hatsuda and Dr Takashi Hamasaki for supplying the crystals.

References

Ashida, T. (1973). The Universal Crystallographic Computing System - Osaka, pp. 55-61. The Computing Center, Osaka Univ.
Bear, C. A., Waters, J. M. \& Waters, T. N. (1970). J. Chem. Soc. Chem. Commun. p. 1705.
Coppens, P. \& Schmidt, G. M. J. (1965). Acta Cryst. 18, 654-663.
Elsworthy, G. C., Holker, J. S. E., McKeown, J. M., Robinson, J. B. \& Mulheirn, L. J. (1970). J. Chem. Soc. Chem. Commun. pp. 1069-1070.
Fukuyama, K., Ashida, T., Katsube, Y. \& Kakudo, M. (1979). Bull. Chem. Soc. Jpn, 52, 677-683.

Fukuyama, K., Hamada, K., Tsukihara, T. \& Katsube, Y. (1978). Bull. Chem. Soc. Jpn, 51, 37-44.

Fukuyama, K., Tsukıhara, T., Katsube, Y., Tanaka, N., Hamasaki, T. \& Hatsuda, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1980-1983.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Motherwell, S. (1976). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge.

[^0]: * Present address: Nihon Shokubai Kagaku Kogyo Co. Ltd, Aboshi-ku, Himeji 671-14, Japan.
 \dagger Present address: Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan.
 \ddagger Author to whom correspondence should be addressed.

[^1]: ${ }^{*} X, Y$, and Z are defined as $a x+c z \cos \beta, b y$, and $c z \sin \beta$ respectively.
 \dagger Not included in the least-squares calculations.

